Biomyx, Inc.
10054 Mesa Ridge Court, Suite 112
San Diego, CA 92121
Phone: (858) 457-3658 FAX: (858) 457-3485
www.biomyx.net

YAP2 ProteGene ${ }^{\text {TM }}$ Set

Catalog\#	H1016
Lot\#	150071

Materials Provided

1. pMEV2HA-YAP2-WT (H1016a): $20 \mu \mathrm{~g}$ in $40 \mu \mathrm{IE}(0.5 \mathrm{mg} / \mathrm{ml})$.
2. pMEV2HA-YAP2-5SA (H1016b):20 $\mu \mathrm{g}$ in $40 \mu \mathrm{TE}(0.5 \mathrm{mg} / \mathrm{ml})$.
3. pMEV2HA-YAP2-5SA ΔC (H1016c): $20 \mu \mathrm{~g}$ in $40 \mu \mathrm{IE}(0.5 \mathrm{mg} / \mathrm{ml})$.
4. Product Information Sheet

Note: Individual plasmids can be ordered separately. Some plasmids are shipped as lyophilized pellet to increase the stability and/or reducing shipping cost.

Receiving and Storage:

If received in liquid form, spin the vials briefly in a microcentrifuge to collect the contents. If received in lyophilized form, add $40 \mu \mathrm{l}$ sterile DI water to the vial, mix thoroughly by vortex and then collect the contents by centrifuging the vials briefly in a microcentrifuge. Store the products at $2-8^{\circ} \mathrm{C}$ if used immediately and store at $-20^{\circ} \mathrm{C}$ for extended storage.

Prokaryotic selection:

The kanamycin-resistance gene (aminoglcoside 3' phosphotransferase) expression cassette in the plasmids confers Kanamycin resistance to bacteria cells. Bacterial cells transformed with the plasmids should be maintained and grown in media containing $25-50 \mu \mathrm{~g} / \mathrm{ml}$ Kanamycin (e.g. \#LK-1100, Prepured LB Agar plates, Biomyx, San Diego, California).

Eukaryotic selection:

The neomycin resistance gene, driven by SV40 early promoter, confers G418 resistance to eukaryotic cells. Stable mammalian cell lines can be selected with G418.

Description of YAP2 and Mutants

Human YAP genes were clones initially using a chicken YAP as the probe (Sudol et al., 1995, Komuro et al. 2003). It is a conactivator of transcription factors. When phosphoraylated by Lats or other upstream kinases, YAP protein translocates into the cytoplasm and has less transcriptional activation effect. YAP is one component of Hippo pathway involved in cell proliferation, apoptosis, cancer, cell contact inhibition and organ size control (Dong et al., 2007, Zhao et al., 2007).

YAP2 contains five HXRXXS motifs, which is the recognition sequence for upstream kinase Lats2. In YAP2-5SA mutant (H1016b), all five groups of serine residues (including S127) are mutated to alanine. This mutant protein can no longer be phosphorylated so more of it remains in the nucleus. As predicted, this mutant has relatively higher basal activity in a reporter assay (Zhao et al., 2007).

YAP2-5SA- $\Delta \mathrm{C}$ (H1016c), which is the YAP2-5SA nucleuslocalizing form with a deletion of the C-terminal transcription activation domain. This mutant YAP2 is insensitive to the Hippo pathway-induced cytoplasmic translocation and cannot activate gene expression, and therefore may act as a dominant-negative form. Overexpression of this mutant restored contact inhibition in a human cancer cell (Zhao et al., 2007).

Molecular Features of the inserts:

Gene: Homo sapiens yes-associated protein 2 (YAP2)
GenBank Accesion\#: AY316529
Synonyms: YAP; YAP2; YAP65; YKI
5'-Cloning Site: Bam HI
5'-Junction Sequence(upper strand):
5'-...tac gct ATG GAT CCC...3'
3'-Cloning Site: Sal I
3'-Junction Sequence (lower strand): 5'-...gcccgggtcgac CTA TAA CCA...-3'

YAP2 Nucleotide \& Amino Acid Sequences

(1467 bps, with mutated serine codons capitalized, in bold red and underlined. The major phosphorylation site S127 and the last amino acid Q291 in H1016c were highlighted as well.)

1

Mutations:
YAP2-WT (H1016a): No mutation.
YAP2-5SA (H1016b): S61A,S109A, S127A, S128A, S131A, S163A, S164A
YAP2-5SA $\triangle C(H 1016 c)$: Mutations in H 1016 b plus C-terminus deletion (G292-L488)

Selected References:

Dong J. et al., 2007, Cell, 130: 1120-1133
Komuro, A., et al., 2003. J. Biol Chem 278. 33334-41
Sudol K. et al., 1995. J Biol Chem 270. 14733-41
Zhao B. et al., 2007. Genes Dev., 21: 2747-61

OMIM Link: http://www.ncbi.nlm.nih.gov/omim/606608

